Overview

Edge cases matter

Robust perception matters

The heavy tail distribution

 Fixing stuff you see in testing isn't enough

Perception stress testing

• Finding the weaknesses in perception

[General Motors]

Carnegie

Mellon University

98% Solved For 20+ Years

Washington DC to San Diego

- CMU Navlab 5
- Dean Pomerleau
- Todd Jochem https://www.cs.cmu.edu/~tjochem/nhaa/nhaa_home_page.html

Carnegie

Mellon University

AHS San Diego demo Aug 1997

What About Edge Cases?

You should expect the extreme, weird, unusual

- Unusual road obstacles
- Extreme weather
- Strange behaviors

http://bit.ly/2ln4rzj

PREDICTED CONCEPT	PROBABILITY
bird	0.997
no person	0.990
one	0.975
feather	0.970
nature	0.963
poultry	0.954
outdoors	0.936
color	0.910
animal	0.908

Carnegie

Mellon University

https://www.clarifai.com/demo

You won't see these in testing

Edge Case are surprises

→ Edge cases are the stuff you didn't think of!

© 2019 Philip Koopman 10

Why Edge Cases Matter

Where will you be after 1 Billion miles of validation testing?

Assume 1 Million miles between unsafe "surprises"

- Example #1: 100 "surprises" @ 100M miles / surprise
 - All surprises seen about 10 times during testing
 - With luck, all bugs are fixed
- Example #2: 100,000 "surprises" @ 100<u>B</u> miles / surprise
 - Only 1% of surprises seen during 1B mile testing

https://goo.gl/3dzguf

- Bug fixes give no real improvement (1.01M miles / surprise)

© 2019 Philip Koopman 12

ML Is Brittle To Environment Changes

Sensor data corruption experiments

 $u_f = 1m, \kappa = 2$ Defocus

 $u_V = 97.8 \text{m}$ Haze **Contextual Mutators**

Defocus & haze are a significant issue

Exploring the response of a DNN to environmental perturbations from "Robustness Testing for Perception Systems," RIOT Project, NREC, DIST-A.

Synthetic Equipment Faults

Correct detection

False negative

Carnegie

Mellon University

Gaussian Blur & Gaussian Noise cause similar failures

© 2019 Philip Koopman 18

Ways To Improve AV Safety

More safety transparency

- Independent safety assessments
- Industry collaboration on safety

Minimum performance standards

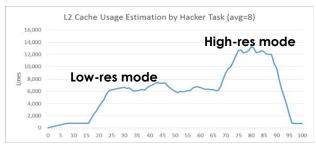
- Share data on scenarios and obstacles
- Safety for on-road testing (driver & vehicle)

Autonomy software safety standards

- Traditional software safety ... PLUS ...
- Dealing with surprises and brittleness
- Data collection and feedback on field failures

Carnegie

Outline


ScheduLeak: methods to leak schedule information Contego: Integrate security & maintain real-time requirements

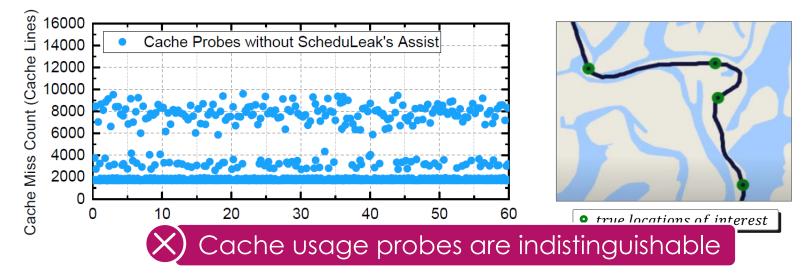
31

Demonstration 1 Cache-Timing Side-Channel Attack

Attack Goals:

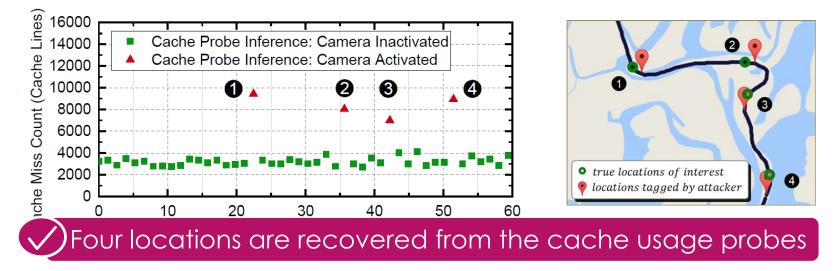
- Probe (coarse-grained) memory usage of victim task
- Recover locations of interest \rightarrow points where memory usage (of victim task) is high

Measurements on Xilinx Zedboard Zynq-7000, FreeRTOS, [CPU Freq: 666MHz, L2 Cache: 512KB, 32 byte line size]



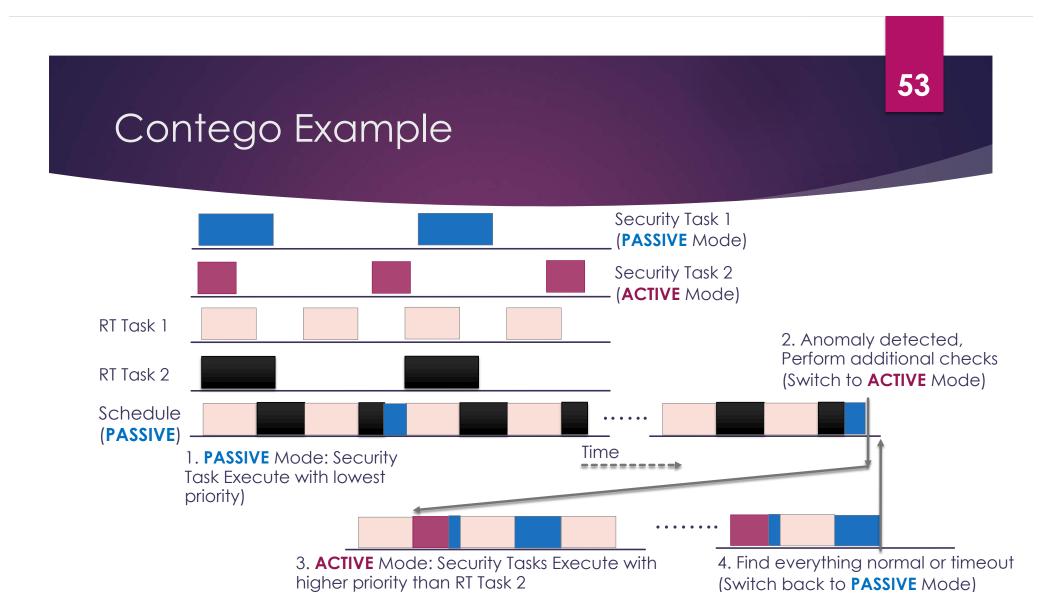
Sibin Mohan | Timing-Infused Resiliency for CPS

January 24, 2019


Demonstration 1 Cache-Timing Side-Channel Attack

- Without ScheduLeak-based information
 - Attackers are forced to randomly sample the system
 - ▶ To detect memory usage changes

Demonstration 1 Cache-Timing Side-Channel Attack


- With precise timing information from ScheduLeak
 - > Attackers can launch cache-timing attack at more precise points
 - Very close to the execution of the victim task

- Allow security tasks to run in two modes:
 - ► PASSIVE
 - Execute opportunistically with lowest priority
 - ► ACTIVE
 - Switch to other (active) mechanisms if abnormality is detected

47

